
ENABLING APPLICATIONS TO EXPLOIT

SMARTNICS, FPGAS, AND ACCELERATORS

Venkata Krishnan, Sean Hefty

March2019

Intel Corporation

PROBLEM STATEMENT

WHAT IS A SMARTNIC?

3

NIC Accelerator

SmartNIC = Network attached
acceleration platform. Offloads
compute from host processor.

+
SmartNIC would ideally support the following:

• Traditional networking capabilities (e.g. RDMA)

• Integrates communication & computation in
hardware

• Configurable for a particular application

• Software stack exposes networking &
acceleration capabilities in a seamless manner
to applications

WHY A SMARTNIC?

4

Desire for changes in
network technology at
the speed of software

SmartNICs provide
programmable solutions

Desire for improved
performance and reduced

latency

SmartNICs can provide
better performance/watt

than host-based apps

Desire for lower server
overhead

SmartNICs reduce
compute cycles doing

infrastructure work

Processor Cores

Real Work

Infrastructure

Accelerator for network & network related workloads

AgilityInfrastructure Offloads Application Acceleration

WHAT DO SMARTNICS LOOK LIKE?

5

SmartNIC

SOC

ASIC
programmable

cores

FPGA SOC
configurable

logic

Discrete

ASIC
limited

flexibility

ASIC+FPGA
FPGA provides
configurability

FPGA

Applications run on host.
SmartNIC offloads compute from host processor

Typically uses PCIe host bus interface to host.

Integrates processor cores with
embedded OS. Could function

autonomously without a host platform.

Degree of “smartness” may vary
(configurability, offload capabilities etc.)

WHAT COULD (AUTONOMOUS) SMARTNICS DO?

EXAMPLE: COMPUTING NEAR SENSORS

Port

Intel®
FPGA
SOC

Port

Intel®
FPGA
SOC

Port

Intel®
FPGA
SOC

Switch Backplane

Intel® Xeon Backend
Processing Nodes

FPGA SOC as Front End Processing Nodes

Frontend (Trigger) - Particle detectors, Radio Astronomy, Aerospace etc.
• “Filter” huge volume of data by performing compute at point of data acquisition
• Estimated reduction in backend nodes/fabric requirements could be 10x-100x
• Flexibility enables new/updates to algorithms

Network Ports

SMARTNIC ACCELERATOR USAGES

Inline accelerators perform compute on data during
transmit/receive operation (streaming or bump-in-wire model)

Lookaside accelerators
Same as traditional accelerator model. However, output
from accelerator can be directly transmitted to target
over network. Similarly data received from network can
be forwarded to accelerator block directly for processing.
There is no data movement back/forth to host.

Triggered Accelerator
No host/OS involvement.
Inline and/or lookaside accelerators
triggered by incoming packet
(Disaggregated model)

SmartNIC

Compute

Node

inline

lookaside p
o

r
t

Network

SmartNIC

inline

lookaside

p
o

r
t

P
ro

c
e

s
s
o

r

c
o

re
(s

)

memory storage

memory storage memory

SOFTWARE INTERFACES

OBJECTIVES

▪Support offloaded accelerations in conjunction with network

•Smart NIC, FPGA, GPU, enhanced switches

•Local and/or remote accelerations

• Inline and look-aside

▪Discover available network functions

▪Enable functions at specific points in network data flows

Expose common software APIs to apply

data operations on network flows

This is NOT an FPGA development kit or a

general API for executing on GPU kernels.

COMMUNICATION ACCELERATION API REQUIREMENTS

Select accelerator

and function

Support local and

remote accelerations

Provide necessary

input parameters

and output results

Network protocol may

need enhancements

SmartNIC SW

may need to

program function

prior to use

Discovery mechanism –

available vs active

Support long-running

functions (out-of-band

execution)

Persistent vs on-

demand functions

SmartNIC

Compute

Node

inline

lookaside p
o

r
t

Network

SmartNIC

inline

lookaside

p
o

r
t

P
ro

c
e

s
s
o

r

c
o

re
(s

)

memory storage

memory storage memory

PROPOSED VISION OF SOLUTION

Application
driven APIs

Open source
communication

framework

Hardware vendor
specific

implementation Define mechanism to pass

input/output parameters

and invoke acceleration

Extend existing

communication framework to

support acceleration functions

APIs targeting application

use of specific accelerations

Based on internal

hardware prototyping

PROPOSAL (WORK IN PROGRESS)

▪ Introduce new provider capability

▪Extend attributes to request/report available accelerations

▪ Introduce new OFI object that corresponds to an acceleration

•Network function

•Generic base definition

▪Specify network function with data transfers

•Apply to all transfers of a specific type

•Specify per operation

NETWORK FUNCTIONS

New capability

#define FI_NETWORK_FUNC (1ULL << ?)

enum {

/* well known functions */

fi_nf_noop,

fi_nf_chain,

…,

/* OR in FI_PROV_SPECIFIC for

* vendor specific functions

*/

};

struct fi_nf_info {

struct fi_nf_info *next;

int type;

uint64_t caps;

uint64_t mode;

uint64_t flags;

void *data;

size_t data_len;

};

Define well-known functions, allow
for extensions

‘Chain’ groups multiple functions
together as a single larger function

Generic structure to request/report
available functions

Returned by existing fi_getinfo() call

Extend domain attributes

NETWORK FUNCTIONS

Open a network function int fi_network_func(domain,

struct fi_nf_info *nf_info,

void * context,

uint64_t flags,

struct fid_nf **nf);

fi_ep_bind(ep, nf, flags);

e.g. flags = FI_SEND | FI_RECV

e.g. flags = FI_WRITE | FI_REMOTE_WRITE

e.g. flags = 0

Associate function with endpoint

Support providers that must configure
function and endpoint prior to use

Can specify types of data transfers to
apply function to

Or indicate that function will be specified
when submitting the data transfer

NETWORK FUNCTIONS

▪Specify function to apply to the
current data transfer via existing
context parameters

• Provide any needed input/output
parameters

struct fi_nf_context {

struct fid_nf *nf;

void **params;

size_t param_cnt;

size_t *param_len;

void *reserved[4];

};

struct fi_deferred_work { … }

fi_control(…)

FI_QUEUE_WORK

FI_SUBMIT_WORK

FI_CANCEL_WORK

FI_FLUSH_WORK

▪Re-use deferred work queues to
execute long-running functions
separate from current data transfer

• Assumes results will be used by future
transfer(s)

NEXT STEPS

Application
driven APIs

Open source
communication

framework

Hardware vendor
specific

implementation

Identify common

accelerations to drive

‘friendlier’ APIs

Expand solution to include

Smart Networks

(e.g. collectives offloads)

Coordinate changes

with heterogeneous

memory support

AND I CAN’T FORGET TO GIVE A CALL-OUT

Hi, Susan!

THANK YOU

LEGAL DISCLAIMER & OPTIMIZATION NOTICE

19

Optimization Notice

Intel’s compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors.
These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or
effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended for
use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer to the
applicable product User and Reference Guides for more information regarding the specific instruction sets covered by this notice.

Notice revision #20110804

▪ Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors.

Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software,

operations and functions. Any change to any of those factors may cause the results to vary. You should consult other

information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of

that product when combined with other products. For more complete information visit www.intel.com/benchmarks.

▪ INFORMATION IN THIS DOCUMENT IS PROVIDED “AS IS”. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE,

TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. INTEL ASSUMES NO LIABILITY WHATSOEVER

AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO THIS INFORMATION INCLUDING LIABILITY OR

WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY

PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

▪ Copyright © 2018, Intel Corporation. All rights reserved. Intel, Pentium, Xeon, Xeon Phi, Core, VTune, Cilk, and the Intel logo are

trademarks of Intel Corporation in the U.S. and other countries.

https://software.intel.com/en-us/articles/optimization-notice
http://www.intel.com/benchmarks

OFFLOADS CAN PROVIDE SIGNIFICANT TCO SAVINGS

20

Multi-core Server Node Multi-core Server Node

Standard NIC SmartNIC with
functional offloads

Infrastructure
functions running
on the host

Not all cores are available
for server workloads

SmartNICs can provide
full functional offload

Better utilization of general
purpose cores

WHAT DO SMARTNICS LOOK LIKE? FPGA EXAMPLES…

21

Network Ports

SOC version

Network
Ports

Discrete version

