
15th ANNUAL WORKSHOP 2019

RDMA PERSISTENT MEMORY EXTENSIONS
Tom Talpey

[March 20, 2019]

Microsoft

OUTLINE

▪ A “top-down” view from application programming model to protocol

▪ SNIA NVMP Programming Model, Remote Access for High Availability

▪ RDMA requirements and extensions

▪ Remote PM workload detailed examples

▪ Next steps

2 OpenFabrics Alliance Workshop 2019

SNIA NVM PROGRAMMING MODEL

▪ Version 1.2 current

• https://www.snia.org/sites/default/files/technical_work/final/NVMProgrammingModel_v1.2.pdf

▪ Expose new block and file features to applications

• Atomicity capability and granularity

• Thin provisioning management

▪ Use of memory mapped files for persistent memory

• Existing abstraction that can act as a bridge

• Limits the scope of application re-invention

• Open source implementations available

▪ Programming Model, not API

• Described in terms of attributes, actions and use cases

• Implementations map actions and attributes to API’s

3 OpenFabrics Alliance Workshop 2019

https://www.snia.org/sites/default/files/technical_work/final/NVMProgrammingModel_v1.2.pdf

SNIA NVMP REMOTE ACCESS FOR HA

▪ History

• Original Remote Access for High Availability white paper published 2016

• Enhanced Remote Access white paper draft V1.1 in public review February 2019

• http://www.snia.org/publicreview

▪ NVM Programming Model Specification 1.3 in development

• Updating specification to reflect learning from implementations

• Incorporate learning from remote access white paper

• Asynchronous Flush

• Remote persistence ordering, error handling

▪ Remote Access Collaboration with Open Fabrics Alliance OFIWG

• OFIWG reviewing and commenting on PM Remote Access for HA V1.1

• Expand remote access use case enumeration

4 OpenFabrics Alliance Workshop 2019

https://nam06.safelinks.protection.outlook.com/?url=http%3A%2F%2Fwww.snia.org%2Fpublicreview&data=02%7C01%7Cttalpey%40microsoft.com%7C93975a2116be4773c29608d68c70956e%7C72f988bf86f141af91ab2d7cd011db47%7C1%7C0%7C636850812509932715&sdata=mDlxPGvRhWMIREVcGdVx1s9Iy%2BNgLNMU8Fx8sqikuJc%3D&reserved=0

PERSISTENT MEMORY (PM) MODES, +REMOTE

Remote Peer

PM Aware Apps

U
se

r
m

o
d

e
K

e
rn

e
l m

o
d

e

PM Aware File
Systems

PM capable Driver

PM Device

NVM.PM.FILE Mode

PM VOLUME Mode

File A
P

Is M
em

o
ry lo

ad
/sto

re

RDMA NIC

RDMA
Operations

RDMA NIC

PM Device

RDMA Data

5 OpenFabrics Alliance Workshop 2019

PM REMOTE ACCESS FOR HA

▪ NVMP TWG-developed interface for remote PM

▪ Maximize alignment with local PM interface

▪ Take remote environment into account
• Including RDMA semantics and restrictions

▪ Analyze the error cases
• As always, “the hard part”

▪ Directly mappable to RDMA (with extensions):
• In NVMP 1.2:

• OPTIMIZED_FLUSH

• OPTIMIZED_FLUSH_AND_VERIFY

• Under discussion (NVMP 1.3):

• ASYNC_FLUSH (initiates flushing)

• ASYNC_DRAIN (waits for flush completion, persist fence)

• Ordering (write-after-flush)

▪ Other NVM PM methods remotable via upper layer(s)

6 OpenFabrics Alliance Workshop 2019

ASYNCHRONOUS FLUSH

▪ Optimized Flush semantics
• Flush both “pushes” Writes and subsequently performs actual Flush

• Synchronous - always waits for completion of Flush on each region

▪ Problem: RDMA latencies significantly larger than local
• Writes, Flush must traverse the network! (as must the Flush response)

• This magnifies the above impacts of Optimized Flush

▪ Solution: “Async Flush”
• Separate the two phases of Optimized Flush:

• ASYNC_FLUSH (push writes to destination, and don’t wait)

• ASYNC_DRAIN (invokes barrier and wait for writes to reach persistence)

• Introduces “Ordering Nexus” to formally describe the Flush-Drain barrier fencing

• Allows overlap, and parallel application processing (efficient middleware implementation)

• Makes best use of network by “pushing early”

• A.k.a “Giddy-up”

• Lowers the latency of eventual Flush

• Less data remaining to flush: less wait latency

• Error conditions require careful analysis

• Subject of NVMP TWG current work

7 OpenFabrics Alliance Workshop 2019

PERSISTENCE VS VISIBILITY

▪ Proposed two distinct “flush semantics” (previously one)

• Persistence (~current semantic)

• Visibility, a.k.a. Global Observability (new semantic)

▪ Emerging devices support these separately

• Visibility does not necessarily imply persistence (volatile cache in front of persistence)

• Persistence does not necessarily imply visibility (multi-socket or multi-port architectures)

▪ Applications desire to control both separately

• For efficiency with proper correctness

• Promptly ensure data is persistent, later make data visible (storage)

• Promptly ensure data is visible, later make persistent (shared memory)

• But even if requesting both, Persistence and Visibility are not reached atomically!

➢Don’t try this with Compare and Swap to PM (even locally)

▪ Considering exposing this distinction in Programming Model

• “Flush type” modifier

• And also RDMA protocol

8 OpenFabrics Alliance Workshop 2019

UNDER DEVELOPMENT IN SNIA NVMP TWG

▪ Scope of flush

• Conceptual “store barrier” or “order nexus”

• Streams of stores, which are later flushed to ensure persistence

• Flush hints (including remote DEEP_FLUSH)

• Modeling these in programming interface, with an eye toward protocol

• Understanding, and guiding, platform and protocol implementation

▪ “Consumers of visibility” vs “Consumers of persistence”

• Failure semantic for consumers of persistence

▪ Assurance of persistence integrity (OPTIMIZED_FLUSH_AND_VERIFY++)

• Explicit integrity semantic, as opposed to current Best-effort

9 OpenFabrics Alliance Workshop 2019

REMOTE PERSISTENT MEMORY

10 OpenFabrics Alliance Workshop 2019

REMOTE PM WORKLOADS

▪ High Availability (HA)

• Resilience, recovery, “RAID-like” properties

• Replication

• Scaleout

▪ Transactions

• Atomicity (failure atomicity)

▪ Networked Shared Memory

• Including Pub/Sub model

▪ And others!

▪ Desire to maintain:

• Ultra-low latency (~ +1 RTT w/o pipeline bubbles, i.e. single-digit microsecond total)

• Programming model compatibility

• Ideally, transparency!

11 OpenFabrics Alliance Workshop 2019

RDMA FLUSH

▪ New RDMA transport operation

▪ Existing RDMA memory operations remain unchanged

▪ Flush executes like RDMA Read

• Ordered, Flow controlled, acknowledged

• All prior RDMA writes on QP guaranteed to have “pushed” prior to executing Flush

• IB “non-posted”, iWARP “queued”

• Requestor specifies byte ranges to be made durable

• Memory Region range-based {region handle, offset, length}

• Responder response guarantees specified range is persisted

• Responder may flush additional bytes based on implementation

• Single Flush acts upon many prior Writes

• Responder acknowledges only when persistence complete

• Connection breaks if error occurs

12 OpenFabrics Alliance Workshop 2019

REMOTE FLUSH (BASIC SEMANTIC)

▪ Application view

▪ Optimized Flush invokes library

• Library initiates RDMA Write(s) to RPM

• Library initiates Remote Flush

• Ordered after prior Writes

• And blocks for Write+Flush completion

• Returns (only) when Flush is complete

▪ Tricky bits:

1. RDMA Writes complete at requestor

before stores to PM at responder

2. Remote Flush arrives before Writes are

executed at responder

3. Remote Flush must wait at responder

until all Writes are safely in PM

13

App: SW
PeerA:

Host SW

PeerANIC:

RNic
PeerBNIC:

RNic
PeerBPM:

PM

PeerB:

Host SW

Map

RDMAOpen

RDMAMmap
register

Memory

Optimized

Flush RDMAWrite

RDMAWrite

Write

RDMAWrite

Write

RDMAWrite

Flush

Flush

Flush

Unmap

RDMAUnmap
unregister

Memory

1

2

3

RDMAWrite

Flush
RDMAWrite

Write

Store

Store

App: SW
PeerA:

Host SW

PeerA:

Adapter
PeerB:

Adapter
PeerB: PM

PeerB:

Host SW

OpenFabrics Alliance Workshop 2019

ASYNC FLUSH (ENHANCED SEMANTIC)

▪ Application overlapped processing

▪ Async_Flush invokes library
• Library initiates RDMA Write(s) to RPM

• Pipelined - does not wait, immediately returns

▪ Additional application processing…

▪ Async_Flush initiates more RDMA Write(s)
• Pipelined - does not wait

▪ Async_Drain initiates Remote Flush
• Library queues RDMA Flush after all prior RDMA Writes

• Async_Drain completes only after all Writes Flush to PM

• Note: application may also continue during this
processing

▪ Tricky bits (1,2,3):
• Same as in prior example!

• But note subtlety:

• Application Flush -> RDMA Write

• Application Drain -> RDMA Flush

▪ RDMA protocol:
• Same as in prior example!

• “Ordering Nexus” is simply the Queue Pair

14

App: SW
PeerA:

Host SW
PeerA:
Adapter

PeerB:
Adapter

PeerB: PM
PeerB:

Host SW

Async_Drain

RDMAWrite

RDMAWrite

Write

RDMAWrite

Write

RDMAWrite

Flush

Flush

Flush

1

2

3

RDMAWrite

Flush

RDMAWrite

Write

Store

Store

Store

Async_Flush

Async_Flush

OpenFabrics Alliance Workshop 2019

ADDITIONAL DESIRED SEMANTICS

▪ Transactional write

• Atomically place 8-byte sized, 8-byte aligned data

• With ordering guarantee to eliminate pipeline bubble(s)

▪ Integrity

• Compute-the-hash

• In support of Optimized Flush and Verify

• Enhanced flush types (Deep Flush)

▪ Security

• Encrypt on wire / at rest

• Possible without protocol extension

▪ RDMA support for these under discussion

• SNIA NVM Programming TWG

• IBTA

• IETF

15 OpenFabrics Alliance Workshop 2019

WRITE, FLUSH AND ATOMIC WRITE

▪ RDMA Atomic Write

• Additional new non-

posted/queued operation

• Executes at responder only after

successful prior non-posted

operations (i.e. Flush)

• Implementable at responder with

or without PCIe Atomic support

▪ Logwriter example shown

▪ Similarly able to support

2-phase commit

16

Flush

Host
SW

Host
PM

NIC NIC

Log buffers

Log pointer

OpenFabrics Alliance Workshop 2019

WRITE, FLUSH AND VERIFY

▪ RDMA “Verify”
• Under discussion

▪ Computes and returns the hash
of a region
• Non-posted/queued to execute at

responder only after prior Flush etc

• Must read the actual persistence domain,
not the visibility domain!

• Optional behavior to return the hash, or
break connection on mismatch

▪ In support of enhanced
“Optimized Flush and Verify”

▪ Supports “paranoid log writer”
• Using break-on-mismatch to fence a

following Atomic Write

• Without requiring a pipeline bubble!

▪ Also supports “scrub”
• Using return-the-hash

17

Flush

Host
SW

Host
PM

NIC NIC

Verify

OpenFabrics Alliance Workshop 2019

ROLE OF THE UPPER LAYER

▪ Connection management

▪ Authentication

• Key derivation and provisioning

• Nonce management

▪ Authorization

• Granting and revoking of remote “push handles”

▪ Assigning QoS policy

▪ And all the other things Upper Layers already do

▪ Think of RDMA and extensions as an “offload” for the PM-aware data handling

18 OpenFabrics Alliance Workshop 2019

STANDARDS EFFORTS

▪ IETF
• RDMA “Commit” (Flush) concept introduced as iWARP protocol extension

• Published as individual Internet-Draft, IETF Feb 2016

• https://tools.ietf.org/html/draft-talpey-rdma-commit-00

• Significant updates being prepared for new publication

▪ IBTA
• RDMA Flush discussions begin in IBTA LWG, Sep 2016

• Intended to become a new Annex to InfiniBand/RoCE specification (not yet publicly available)

• https://www.snia.org/sites/default/files/PM-Summit/2019/presentations/11-PMSummit19-Burstein-Making-RM-Persistent.pdf

▪ The above specifications are in harmony on Flush semantics
• Applications need not be concerned with choice of transport (common Verbs)

▪ PCIe semantics desirable
• PCI SIG reportedly considering Flush semantic

• To enable platform-independent RNIC behaviors

• PCI “Atomic Ops ECN” (August 2017)

• May provide additional semantic guarantees for Atomic Write RDMA operation

19 OpenFabrics Alliance Workshop 2019

RDMA PM EXTENSIONS NEXT STEPS

▪ SNIA NVMP TWG specification work continues

• OFIWG feedback on semantics

▪ IBTA, IETF RDMA Standards specification proceed

▪ OFIWG and RDMA software implementation

• In Open Source, commercial operating systems, etc

▪ RDMA vendor implementation

▪ PCI SIG specification and broad PCIe implementation

20 OpenFabrics Alliance Workshop 2019

15th ANNUAL WORKSHOP 2019

THANK YOU
Tom Talpey

Microsoft

