
15th ANNUAL WORKSHOP 2019

HPNL: A HIGH-PERFORMANCE LIGHT WEIGHTED NETWORK LIBRARY

FOR BIGDATA APPLICATION
Haodong Tang, Jian Zhang, Fred Zhang

{haodong.tang, jian.zhang, fred.zhang} @intel.com

[March, 2019]

Intel

LEGAL NOTICE AND DISCLAIMERS

No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by this document.

Intel disclaims all express and implied warranties, including without limitation, the implied warranties of merchantability,
fitness for a particular purpose, and non-infringement, as well as any warranty arising from course of performance,
course of dealing, or usage in trade.

This document contains information on products, services and/or processes in development. All information provided
here is subject to change without notice. Contact your Intel representative to obtain the latest forecast, schedule,
specifications and roadmaps.

The products and services described may contain defects or errors known as errata which may cause deviations from
published specifications. Current characterized errata are available on request.

Intel, the Intel logo, 3D Xpoint, Optane, Optane DCPMM are trademarks of Intel Corporation in the U.S. and/or other
countries.

*Other names and brands may be claimed as the property of others

© 2019 Intel Corporation.

2 OpenFabrics Alliance Workshop 2019

LEGAL INFORMATION: BENCHMARK AND PERFORMANCE

DISCLAIMERS

▪ Performance results are based on testing as of Feb. 2019 and may not reflect all publicly

available security updates. See configuration disclosure for details. No product can be

absolutely secure.

▪ Software and workloads used in performance tests may have been optimized for performance

only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are

measured using specific computer systems, components, software, operations and functions.

Any change to any of those factors may cause the results to vary. You should consult other

information and performance tests to assist you in fully evaluating your contemplated

purchases, including the performance of that product when combined with other products. For

more information, see Performance Benchmark Test Disclosure.

▪ Configurations: see performance benchmark test configurations.

3 OpenFabrics Alliance Workshop 2019

AGENDA

▪ Background and motivation

▪ RDMA enabling in bigdata software ecosystem

▪ Transportation agnostic messenger proposals – HPNL

▪ Optimizing Spark shuffle with HPNL and Persistent Memory

▪ Summary & Next steps

4 OpenFabrics Alliance Workshop 2019

BACKGROUND AND MOTIVATION

OpenFabrics Alliance Workshop 20195

BACKGROUND AND MOTIVATIONS

▪ Bigdata analytics software stack requires RDMA for higher performance

• Spark is expected to achieve high throughput & ultra-low latency for different workloads like ad-hoc query, real-time

streaming, and machine learning

• There are bottlenecks to be improved in shuffle phase

• While RDMA networking can leads to orders of magnitude improvement, using VERB interface is a challenge for

application development and porting

▪ Motivations

• A light-weight network library built on Libfabric

• Protocol-independent networking framework that can easily run on all transportation protocols: TCP, RDMA, IB,

OPA etc.

• Flexible interfaces & abstractions: C/JAVA API and high-level abstraction to let developer easily replace other

TCP/IP based network library, like ASIO or Netty

6 OpenFabrics Alliance Workshop 2019

BIGDATA APPLICATION MEETS MODERN NETWORK

TECHNOLOGY
▪ Network interconnects have evolved
▪ Bandwidth from 1Gbps to 100Gbps

▪ Message RTT latency reduced by an order of magnitude

7 OpenFabrics Alliance Workshop 2019

▪ BigData Application cannot benefit from new HW

▪ Network consecutive evolving doesn’t result in

application consecutive speedup.

Source
*: https://ethernetalliance.org/the-2018-ethernet-roadmap
**: https://www.openfabrics.org/images/eventpresos/2017presentations/109_Crail_BMetzler.pdf

Ethernet Speed * Bigdata workloads performance **

https://ethernetalliance.org/the-2018-ethernet-roadmap
https://www.openfabrics.org/images/eventpresos/2017presentations/109_Crail_BMetzler.pdf

RDMA ENABLING IN BIGDATA ECOSYSTEM

OpenFabrics Alliance Workshop 20198

APPROACH 1 – INTEGRATE LIBFABRIC INTO BIGDATA APP CASE BY

CASE

▪ Existing projects for BigData w/ RDMA

▪ SparkRDMA.

▪ TeraSort benchmark shows 2.63x overall

reduced in execution time.*

▪ HiDB project from OSU.

▪ HiBench PageRank total time reduced by 37%-

43% over IPoIB.**

▪ Pros

▪ Easy to integrate to one BigData application

▪ Cons

▪ Hard to benefit all the BigData App, need to

integrate case by case.

▪ Can’t enable cross-stack optimization.

9 OpenFabrics Alliance Workshop 2019

A
n

al
yt

ic
s

N
et

w
o

rk

Java Socket

Netty

Thrift

gRPC

New Library

TC
P

/I
P

R
D

M A

O
m

in
i-

p
at

h
o

th er
s

1

libfabric

* https://github.com/Mellanox/SparkRDMA
** http://hibd.cse.ohio-state.edu/performance/pagerank/

https://github.com/Mellanox/SparkRDMA
http://hibd.cse.ohio-state.edu/performance/pagerank/

APPROACH 2 – INTEGRATE LIBFABRIC INTO EXISTING LIB

▪ Netty* is widely used in BigData application.

▪ However, message transfer is more expensive

than RDMA.

▪ Message RTT time is higher.

▪ Consumes more CPU.

10 OpenFabrics Alliance Workshop 2019

3.9 5.2 7.8
14

18

52

0

20

40

60

2 bytes 512 bytes 4096 bytes

R
TT

 (
U

S)

MICRO-BENCHMARK - PING-PONG TEST
(SINGLE THREAD)

c++: libfabric+polling java: netty-4.1.25+default

Pros

▪ When Netty supports RDMA & Omni-Path, all the
BigData App based on Netty will benefit directly.

Cons

▪ Hard to implement all the interface in Netty transport
layer.

▪ Can’t enable cross-stack optimization.

A
n

al
yt

ic
s

N
et

w
o

rk

Java Socket

Netty

Thrift

gRPC

Others

TC
P

/I
P

R
D

M A

O
m

in
i-

p
at

h
o

th er
s

2

libfabric

* https://netty.io/index.html
** https://netty.io/wiki/adopters.html

https://netty.io/wiki/adopters.html
https://netty.io/index.html
https://netty.io/wiki/adopters.html

APPROACH 3 – FULL STACK OPTIMIZATION FOR DATA STORAGE

▪ Existing projects for BigData by this way.

▪ Crail from IBM.

▪ FlashNet: Flash/Network Stack Co-Design

▪ Octopus: An RDMA-enabled Distributed Persistent

Memory File System

▪ Pros

▪ Co-designed storage/network stack optimized to

reduce cross-stack overhead between network and

flash IO.

11 OpenFabrics Alliance Workshop 2019

NVMe SSDPMEM HDD

Analytics Storage
(HDFS, S3, Ceph…)

Analytics Cluster Resource Management
(YARN, Mesos, K8s)

Analytics Data Processing && Access
(Spark, Storm, HBase, Hive)

Application

Analytics Storage/Cache

https://www.systor.org/2017/slides/FlashNet.pdf
https://www.usenix.org/conference/atc17/technical-sessions/presentation/lu

TRANSPORTATION AGNOSTIC MESSENGER–

HIGH PERFORMANCE NETWORK LIBRARY (HPNL)

OpenFabrics Alliance Workshop 201912

WHY LIBFABRIC?

▪ Libfabric is developed by the OFI Working Group, a subgroup of OFA.

▪ Goals: to define interfaces that enable a tight sematic map between application and underlying fabric services.

▪ Libfabric is friendly to application developers, transportation protocol agnostic, easy to port and migrate to new hardware.

13 OpenFabrics Alliance Workshop 2019

*source: https://ofiwg.github.io/libfabric/

https://www.openfabrics.org/
https://ofiwg.github.io/libfabric/

WHERE DOES HPNL FIT IN THE BIGDATA STACK?

▪ HPNL is a general-purpose network library and a appropriated choice to accelerate

BigData application with HPC network technology.

14 OpenFabrics Alliance Workshop 2019

Analytics Storage
(HDFS, S3, Ceph…)

Analytics Cluster Resource Management
(YARN, Mesos, K8s)

Analytics Data Processing && Access
(Spark, Storm, HBase, Hive)

Application

A
n

al
yt

ic
s

N
et

w
o

rk

Java Socket

Netty

Thrift

gRPC

HPNL

TC
P/

IP
R

D
M

A
O

m
in

ip
at

h
o

th
er

s

PREVIOUS WORK: RDMA IN CEPH

▪ XIO Messenger.

• Based on Accelio, seamlessly supporting RDMA.

• Scalability issue.

• Merged to Ceph master three years ago, no support for now.

▪ Async Messenger.

• Async Messenger is compatible with different network protocol, like Posix,

RDMA and DPDK.

• Current RDMA implementation supports IB protocol.

▪ We implemented iwrap based RDMA for Ceph and

pushed to upstream *

• Showed 17% performance improvement for 4K random write compared with

TCP/IP

• Connection management: RDMA-CM based RDMA connection management

• Queue pairs: centralized memory pool for recv queue (RQ)

▪ Extended the work, build a developer friendly

library for bigdata applications

HW Ethernet NIC(RNIC)

NIC Driver

Dispatcher

Kernel

Async Messenger

IO Library
RDMA Stack + OFA Verb APInetwork stack

event driver

event driver

event driver

workers pool

dispatch queue
event driver

event driver

event driver

workers pool

same pool

IB Link

IB Transport

IB Transport APIkernel bypass

OpenFabrics Alliance Workshop 201915

* Accelerating Ceph with RDMA and NVMe-OF: OFA 2018

https://openfabrics.org/images/2018workshop/presentations/206_HTang_AcceleratingCephRDMANVMe-oF.pdf?a7362a&a7362a&7646d4&7646d4

HPNL ARCHITECTURE

▪ Zero-copy approach
• The HPNL buffer allowed to be directly used by application

without copying data between HPNL buffer and application
buffer.

• Thanks to RDMA, it supporting user-space to kernel-space zero-
copy.

▪ Threading model
• Implements the Proactor model.

• Interrupt + polling approach to optimize HPNL thread.

• Supports thread binding to specific core.

▪ HPNL interface
• C/C++ and Java interface.

• Supports send, receive, remote read, remote write semantics.

• Pluggable buffer management interface.

• Capable of using Persistent memory as RDMA buffer.

▪ Open Source
• HPNL is Under internal opensource process, expected to be

opensourced in Q2.

16 OpenFabrics Alliance Workshop 2019

Server

Demultiplexer

Core

Epoll + fi_wait

Client1 Client2 ClientNClient

Core Core

HPNL interface

CQService CQService CQService EQService

User callback

Buffer mgr.

libfabric

User callback

Buffer mgr.

libfabric

User callback

Buffer mgr.

libfabric

MICROBENCHMARK CONFIGURATION

▪ Hardware

• Intel(R) Xeon(R) CPU E5-2699 v4 @ 2.20GHz

• Mellanox ConnectX-4 – RoCE V2

• Arista 7060 CX2-32S

▪ Software

• HPNL Java interface with libfabric v1.6.0

• OFED

• CentOS 7

▪ Micro benchmark Methodology

• Send/receive based Ping-pong test

• 1million times transfer of 4K sized message

17 OpenFabrics Alliance Workshop 2019

Switch

Server 1 Server 2

PING PONG

MICRO WORKLOADS PERFORMANCE

▪ Test 1: message size scaling test, single

thread

• Shows better performance than Netty or ASIO.

▪ Test 2: Connection scaling test

• Message size: 65536

• Hits bandwidth limitation.

• Message size: 4096

• Send/recv based interface shows round-trip time less

than 4 us.

18 OpenFabrics Alliance Workshop 2019

0

1000

2000

3000

4000

5000

1 2 3 4 6 8 10

Th
ro

u
gh

p
u

t
(M

B
/s

)

Connections

Connection scaling test: Throughput

7.8 8.4 9.8
15.3

22.1
32

55.3

0

20

40

60

1024 2048 4096 8192 16384 32768 65536

La
te

n
cy

 (
u

s)

Byte Size

Message size scaling test: Byte Size

0

2

4

6

8

10

12

1 2 3 4 5 6 7 8

La
n

te
yc

 (
u

s)

Connections

Connection scaling test: Latency

Peak throughput is 3.8 GB/s

lowest message round-
trip time is 3.8 us

OPTIMIZING SPARK SHUFFLE WITH HPNL AND

PERSISTENT MEMORY

OpenFabrics Alliance Workshop 201919

SPARK SHUFFLE

20

load

load

Input
A HDFS file

load
sort

Output
A HDFS file

sort

sort

Intermediate Data
Each Map’s output Shuffle (Random Partition)

2
1

9

1

5

8

2

6
5

2
1
1
2

5
6
5

9
8

1
1
2
2

5
5
6

8
9

9
2
1

8
1
5

6
5
2

https://github.com/intel-hadoop/HiBench/blob/master/sparkbench/micro/src/main/scala/com/intel/sparkbench/micro/ScalaSort.scala

Decompression Compression Decompression Compression

Local

Local

Local

Write Local, can use shuffle service to cache the data.

Read Remote via Network

OpenFabrics Alliance Workshop 2019

https://github.com/intel-hadoop/HiBench/blob/master/sparkbench/micro/src/main/scala/com/intel/sparkbench/micro/ScalaSort.scala

SPARK-PMOF CO-DESIGN

1. Serialize obj to off-heap memory

2. Write to local shuffle dir

3. Read from local shuffle dir

4. Send to remote reader through TCP-IP

➢ Lots of context switch

➢ POSIX buffered read/write on shuffle disk

➢ TCP/IP based socket send for remote shuffle read

21 OpenFabrics Alliance Workshop 2019

Shuffle file

Spark.Local.dir

Shuffle file

Executor JVM #1

User

Kernel

SSD HDD

3

Shuffle write

Shuffle read

2

4

Worker

1. Serialize obj to off-heap memory

2. Persistent to DCPMM (pmem_memcpy_persistent)

3. Read from remote DCPMM through RDMA, DCPMM is

used as RDMA memory buffer

➢ No context switch

➢ Efficient read/write on DCPMM

➢ RDMA read for remote shuffle read

Executor JVM #1

User

Kernel 3

Worker

DCPMM
Shuffle ManagerShuffle Manager

NIC

Shuffle
Writer

RDMA NICDCPMM

Drivers

Shuffle
Reader bytebuffer

1 obj Heap

Off-heap

Shuffle
Writer(new)

Shuffle
Reader(new)

obj

bytebuffer

1
Heap

Off-heap2

dax

SYSTEM CONFIGURATION

22
*Other names and brands may be
claimed as the property of others.

3 Node cluster
Hardware:
• Intel® Xeon™ processor E5 2699V4 @ 2.2GHz,

558GB Memory
• 1x Mellanox ConnectX-4 40Gb NIC
• 1x 1TB HDD for spark-shuffle
• 4x NVMe for HDFS
Software:
• Hadoop 2.7
• Spark 2.3
• CentOS 7
• HiBench TeraSort 500GB

Hadoop NN
Hadoop DN

Spark Master

Hadoop DN
Spark Slave

Hadoop DN
Spark Slave

Hadoop DN
Spark Slave

1x40Gb NIC

4x NVMe

1x HDD

4x NVMe

1x HDD

4x NVMe

1x HDD

OpenFabrics Alliance Workshop 2019

RDMA PERFORMANCE BENEFITS FOR SPARK SHUFFLE

▪ 1.5x performance improvement

▪ And much stable!

▪ Page cache impact on spark-netty performance

23 OpenFabrics Alliance Workshop 2019

1922.32

2898.053

0

500

1000

1500

2000

2500

3000

3500

4000

4500

round_1 round_2 round_3 average

ti
m

e(
s)

Spark Execution Time - TCP/IP vs RDMA
(terasort, 500GB, 3x BDW nodes)

spark-rdma spark-netty

SYSTEM CONFIGURATION

24
*Other names and brands may be
claimed as the property of others.

3 Node cluster

Hardware:
• Intel(R) Xeon(R) Gold 6140 CPU @ 2.30GHz
• 1x Mellanox ConnectX-4 40Gb for shuffle
• 384 G MEM
• 1 x X722 for Hadoop
• 4x P4500 for HDFS
• 4x 256GB DCPMM
• 1x HDD/SSD (1x 400Gb DC S3700)/NVMe (1x P4500)/(4x

256GB) DCPMM for Shuffle

Software:
• Fedora 27
• Kernal 4.18.19-100.fc27.x86_64
• Hadoop 2.7
• Spark 2.3
• Libfabric 1.6.2
• MLNX_OFED_LINUX-4.5-1.0.1.0-fc27-x86_64

Workloads:
• Hibench terasort 1TB

Hadoop NN
Hadoop DN

Spark Master

4x P4500 for HDFS

Hadoop DN
Spark Slave

1x40Gb NIC

1x HDD/SSD/NVMe

4x DCPMM

4x P4500 for HDFS

1x HDD/SSD/NVMe

4x DCPMM

Hadoop DN
Spark Slave

4x P4500 for HDFS

1x HDD/SSD/NVMe

4x DCPMM

OpenFabrics Alliance Workshop 2019

PERFORMANCE SUMMARY

▪ PMoF vs. HDD

• PMEM and PMEM+RDMA are

9.17x and 9.10x faster than HDD

respectively.

• However, the benefit over

NVMe+TCP/IP is not very big

• Other opportunities:

• Lower CPU utilization

• Latency sensitive workloads –

streaming

25

0

2000

4000

6000

8000

10000

12000

14000

16000

Ti
m

e(
s)

Spark TeraSort End-to-end Time

HDD+TCP/IP PMEM+RDMA

8.84

1.00

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

9.00

10.00

Terasort Stage 1 (Normalized)

HDD+TCP/IP PMEM+RDMA

0

5000

10000

15000

20000

25000

30000

min 25% lantecy 50% latency 75% lantecy 100% lantecy

Read block time (ms)

Spark-PMoF Spark-NVMe

11.10

1.00

0.00

2.00

4.00

6.00

8.00

10.00

12.00

Terasort Stage 2 (Normalized)

HDD+TCP/IP PMEM+RDMA

OpenFabrics Alliance Workshop 2019

STAGE 2 PERFORMANCE BREAKDOWN (HDD+TCP/IP)

OpenFabrics Alliance Workshop 201926

STAGE 2 PERFORMANCE BREAKDOWN (PMEM+RDMA)

OpenFabrics Alliance Workshop 201927

NEXT: HPNL INTEGRATION WITH EXTERNAL SHUFFLE CLUSTER

▪ Elastic Deployment with compute and storage

disaggregation requires independent shuffle

solution
• Shuffle I/O are decoupled from a specific

network/storage.

• Shuffle read and write can be implemented using

configurable network transports and backend storage

▪ External shuffle cluster
• Lots of on-going efforts making HCFS as shuffle: [Spark-

1529, Spark-3685, SPARK-25299]

• And lots of customized solutions

• Independent HPNL library can be integrated with

customized solutions

• Opensource version reference design based on HCFS

shuffle manager and HDFS will come out soon

28

New Shuffle Manager

Shuffle read Shuffle read

New Shuffle Manager

Shareded storage(Alluxio/crail/etc)

Executer 0 Executer 1
HPNL based NM

HPNL based NM

HPNL based NM HPNL based NM
Shuffle readShuffle write Shuffle readShuffle write

Disaggregated storage

OpenFabrics Alliance Workshop 2019

https://issues.apache.org/jira/browse/SPARK-1529
https://issues.apache.org/jira/browse/SPARK-3685
https://issues.apache.org/jira/browse/SPARK-25299

SUMMARY

OpenFabrics Alliance Workshop 201929

SUMMARY & NEXT STEP

▪ Summary

▪ Traditional TCP/IP stack can’t benefit more and more Real-time BigData processing even with
modern network hardware while RDMA has been proved as an effective way to speedup BigData
workload from existing projects.

▪ HPNL is a transportation Agnostic high performance network library based on libfabric

▪ HPNL demonstrated significant performance advantage over TCP/IP for bigdata applications

▪ 1.5x over TCP/IP for spark terasort

▪ Spark shuffle with HPNL and pmem delivers up to 9x performance improvement over traditional
shuffle solution based on TCP/IP and HDD

▪ Persistent memory over fabrics with HPNL and pmem enables new workloads and new storage
solutions

▪ Latency sensitive workloads and external/remote shuffle cluster

▪ Next step

▪ RPC with HPNL

▪ RDMA in external shuffle cluster

30 OpenFabrics Alliance Workshop 2019

15th ANNUAL WORKSHOP 2019

THANK YOU
Haodong Tang, Jian Zhang, Fred Zhang

haodong.tang@intel.com, jian.zhang@intel.com, fred.zhang@intel.com

[March, 2019]

Intel

BACKUP

OpenFabrics Alliance Workshop 201932

BACKUP – SPARK PMOF TEST CONFIGURATIONS

33 OpenFabrics Alliance Workshop 2019

▪ Terasort 1TB:
• hibench.spark.master yarn-client
• hibench.yarn.executor.num 12
• yarn.executor.num 12
• hibench.yarn.executor.cores 8
• yarn.executor.cores 8
• spark.shuffle.compress false
• spark.shuffle.spill.compress false
• spark.executor.memory 60g
• spark.executor.memoryoverhead 10G
• spark.driver.memory 80g
• spark.eventLog.compress = false
• spark.executor.extraJavaOptions=-XX:+UseG1GC
• spark.hadoop.yarn.timeline-service.enabled false
• spark.serializer org.apache.spark.serializer.KryoSerializer
• hibench.default.map.parallelism 200
• hibench.default.shuffle.parallelism 1000

